In this paper we describe the system submitted for the SemEval 2014 Task 9 (Sentiment Analysis in Twitter) Subtask B. Our contribution consists of a supervised approach using machine learning techniques, which uses the terms in the dataset as features. In this work we do not employ any external knowledge and resources. The novelty of our approach lies in the use of words, ngrams and skipgrams (not-adjacent ngrams) as features, and how they are weighted.