Actas del XXXI Congreso de la Sociedad Espafiola para el Procesamiento del Lenguaje Natural

Parsing Text into RDF graphs*

Andlisis semdntico de textos para derivar grafos RDF

Claire Gardent
CNRS/LORIA

Nancy, France

Brahim Batouche Anne Monceaux
CNRS/LORIA

Nancy, France Blagnac, France

Resumen: Proponemos un método basado en RDF para consultas sobre el con-
tenido de un texto. En primer lugar, el texto es alineado a tuplas RDF usando
herramientas de Procesamiento de Lenguage Natural (PLN). Luego, el contenido
del texto puede ser interrogado a través de consultas expresadas en SPARQL. Apli-
camos la estrategia sobre un conjunto de reglas y mostramos que el sistema permite
recuperar aquellas reglas que satisfacen un requerimiento dado.

Palabras clave: La semantica, RDF, SPARQL, extraccién de informacion

Abstract: We propose a RDF-based method for querying the content of a text.
Text is first mapped to RDF triples using existing Natural Language Processing
tools. The text content can then be queried using SPARQL queries. We apply the
approach to a set of rules and show that the resulting system permits retrieving
those rules that satisfy a given information need.

Keywords: Semantics, RDF, SPARQL, Open Domain Information Extraction

Introduction

ISBN: 978-84-608-1989-9

Airbus Group Innovation

aligned text and formal representations e.g.,

Semantic parsing maps natural language text
into computer interpretable meaning repre-
sentations. It differs from related tasks such
as semantic role labelling or deep parsing in
that its output is in formal language and is
meant for computers to read. In this set-
ting, evaluation is task based. A semantic
interpretation is correct if it yields the cor-
rect response with respect to the application
making use of it.

Earlier semantic parsing systems include
(Woods, 1973) and (Warren y Pereira,
1982) which were both developed to query
databases in natural language. Because these
systems relied on manually coded lexicons,
grammars and semantic interpretation rules,
they lack portability and were costly to de-
velop and maintain however.

More recent work on semantic parsing es-
chews the manual authoring of linguistic re-
sources by exploiting training corpora as-
sociating natural language sentences with
meaning representations to learn a seman-
tic parser from aligned data (Zettlemoyer y
Collins, 2012; Kate y Mooney, 2006). Like
the earlier systems though, these new se-
mantic parsers are domain dependent in that
they are trained on domain specific corpora of

* The work reported in this paper was partially
funded by the ITEA ModelWriter Project

an air travel information (ATIS corpus), ge-
ography data (Geoquery) or robot instruc-
tions (robocup). Porting them to a new do-
main requires building a new training corpus
which again is time consuming as it is dif-
ficult to obtain semantic representations for
sentences.

In contrast, recent work on open do-
main semantic parsing has focused on map-
ping natural language utterances into log-
ical forms to be executed on large knowl-
edge bases (Berant et al., 2013; Cai y Yates,
2013; Bordes et al., 2011; Bordes et al., 2011)
since it drives applications such as question
answering (QA) and information extraction
(IE). Most of this work however focuses on
factoid questions with a modest amount of
compositionality typically, questions whose
meaning can be represented by a single RDF
triple (e.g., Who directed TopGun?).

In this paper, we present a semantic pars-
ing approach which maps text to RDF triples.
The resulting RDF database is combined
with a domain ontology and can be queried
using SPARQL queries. In this way, the text
interpretation can be used to support arbi-
trary queries about the text while the inte-
gration of the text semantics with domain
knowledge permits a seamless integration
with reasoning (e.g., querying the database
for information about pipes and retrieving in-

ATA Zone Rule Object Auxiliary Action verb Prep Object 2

38 1 1 Pipe

shall be

segregated from electrical route

Table 1: Semi-Structured Rule

formation that was given by the text about
hose pipe i.e., a subclass of the class being
queried).

We develop a proof-of-concept implemen-
tation and evaluate the approach in a con-
text where system engineers need to retrieve
from a set of documents the information rel-
evant to the task they are working on. Given
a large set of documents, system engineers
often need to retrieve from these documents
all the rules, requirements or specifications
that are specific to the task they are address-
ing. We focus on a case where the documents
are regulations describing the installation de-
sign principles of a system or a set of systems
and where the engineer must retrieve from an
existing set of regulation documents all the
information relevant to the design of a new
system. In this setup, the meaning represen-
tations extracted from text must support the
information needs of the engineers. For in-
stance, they must allow the user to retrieve
all design principle rules that apply to the
various parts of the system they are design-
ing. We illustrate by means of examples, how
the representations produced support differ-
ent kind of queries; and how integrating text
meaning and domain knowledge permits an-
swering queries whose response is only im-
plicit in the text.

The paper is structured as follows. We
start by motivating our approach and ex-
plaining the applicative setting in which it
is used (Section 2). We then go on to present
our approach (Section 3) and illustrate its
working using a run through example. In
Section 4, we show various types of exam-
ple queries which can be answered given our
interpretation process and the added domain
knowledge. Section 6 concludes with pointers
for further research.

2 Motivation

Installation design principle documents in-
corporate the various sets of regulations and
directives about how to install a system or a
set of systems in a functional area (e.g., elec-
trical and optical system or Water Waste Sys-
tem). For each aircraft project, a set of such
documents must be produced to ensure that

the resulting system comply with the system
requirements and take into consideration ap-
plicable regulations and procedures. To facil-
itate access to the relevant information, the
initial approach has been to manually build a
rule database which currently contains instal-
lation rules normalised in a semi-structured
format. For instance, the rule shown in Fig-
ure 1 describes a segregation constraint hold-
ing between a pipe and an electrical route.
This constraint is specified by Rule 1 and ap-
plies in Zone 1 of the functional area ATA38
(i.e., the water waste system). While the
creation of this relational database facilitates
the identification of relevant information, this
initial approach has several shortcomings.

First, the database model is fixed and can
not easily be changed in case it does not, or
no longer satisfy the information needs of the
users. RDF has no such limitations.

Second, databases do not integrate easily
with knowledge bases and reasoning services.
In contrast, RDF'S provides a base level inte-
gration of RDF triples with knowledge based
reasoning by allowing for class, subClass, domain
and range declarations. OWL based reasoning
is also supported which provides additional
expressivity and permits describing the rela-
tionships and structure of entire domains.

A third drawback is that the manual con-
struction of the database is time consuming
and costly.

By converting rules to RDF triples, our
approach addresses each of these shortcom-
ings. Because the meaning representations
of rules are not constrained by a database
schema, they can be freely modified and
adapted to suit the information needs of the
users. The RDF format permits an easy in-
tegration with basic reasoning services. And
the use of NLP techniques to automatically
convert text to RDF triples avoids the need
for manual conversion of the rules. Because
we process the normalised rules (from the ex-
isting data base) rather than the input docu-
ments, we do not fully address this last point.
However, by proposing a method for map-
ping text to RDF graphs, we provide a first
step towards converting the documents into a
meaning representation (an RDF knowledge

SBJ
AUX
AU

PREP-WITH

Pipe shall be identified

caution_label if pipe s

ADVCL

CONJ-OR

heated insulated

Figure 1: Example Dependency Tree of Rule 14

base) that can be queried, which has a well
defined semantics and which can easily be
combined with domain specific knowledge.

3 Approach

As mentioned above, in a first step, we pro-
cess the normalised rules contained in the
database rather than the design principle
documents themselves. Indeed, extracting
rule information from documents involves ad-
ditional processes such as information extrac-
tion (identifying those parts of the document
which describe rule related information such
as the aircraft zone a rule applies in, the ATA
area it belongs to and the rule itself) and
anaphora resolution (e.g., resolving pronouns
or implicit anaphors). Here we focus on the
semantic parsing task (i.e., how to map text
to a computer interpretable meaning repre-
sentation) and leave the question of how to
extract rule information from full document
open for further research.

To convert text to RDF representations,
we combine existing NLP and Semantic Web
technology into the pipeline architecture de-
picted in Figure 3. The remainder of this
section explains each of the processing steps
involved and illustrates them using a running
example.

3.1 Preprocessing

First, the text fragments associated with a
design principle rule are extracted from the
database and stored into a text file. For
instance, the semi-structured rule shown in
Figure 1 is extracted from the corresponding
row and stored into a text file as follows:

(1) Rule: Pipe shall be segregated from electrical
route
ATA:88, Zone 1, Rule 1

Note that the rule is stored separately
but that the additional relevant information
stored in other database attributes (i.e., ATA

functional area, zone and rule identifiers) is
preserved.

Next rules are tokenised and terms are rec-
ognized and grouped into single units. For
instance, in Example (1), the bigram electri-
cal route is recognised as a term and marked
as such so that the parser will treat it as a
word. Terms may be recognised in different
ways. They may either be listed in a file by
a domain expert or extracted automatically
from the corpus of rules using term extrac-
tion techniques (Nakagawa y Mori, 2002). In
addition, synonyms may be grouped together
so that variants of a given term can be nor-
malised to a single representative term ide-
ally, the label of the corresponding concept
in the domain ontology. In this first exper-
iment, we allow for two ways of detecting
terms. We either list them in a file relying on
the expert knowledge provided by the indus-
trial or we extract them automatically from
the corpus relying on n-gram frequency that
is, we assume that frequent n-grams involv-
ing content words are domain specific terms.
In addition, we use a predefined list of stop
n-grams to filter out frequent n-grams that
are function words (e.g., in order to).

3.2 Parsing

Once rules have been tokenized and terms
have been recognised, rules are parsed us-
ing the Stanford dependency parser (Klein y
Manning, 2003). Figure 1 shows the depen-
dency parse tree of Rule 14. In this tree, each
node is labelled with a word of the input sen-
tence and edges between nodes are labelled
with grammatical relations (e.g., sbj for nom-
inal subject or prep-with for a prepositional
object introduced by the preposition with).
Preposition (e.g., with) are “folded into” the
arc label rather than labelling a node as is the
case for all other words in the input sentence.

mdwr="http://localhost:8080/Rdf_example#"

<rdf :Description rdf:about="http://localhost:8080/Rdf_example#pipe">
<mdwr:segregate-from rdf: resource="http://localhost:8080/Rdf_example#felectrical-route"/>
<mdwr:identify-with>"label"</mdwr:identify-with>

</rdf:Description>

Figure 2: RDF Triples extracted from the Natural Language triples (pipe, segregate-from,

electrical-route) and (pipe, identify-with, label).

~
L=

A

[Technical text]

Y

J
~

Domain ontology

Figure 3: Architecture of the Semantic Pars-
ing and Querying Process

3.3 Extracting triples

Because they directly capture func-
tor/arguments and modifier/modifiee
relations, dependency structures are often
viewed as approximating semantic repre-
sentations of a sentence content (Candito
y Kahane, 1998). Here we exploit this
feature to extract (s,p,o) triples based on
the dependency relations holding between
words and/or terms. We manually specify a
set of rules mapping subtrees of dependency
parse trees into RDF triples. For instance, if
the dependency parse tree contains a subtree
of the form:

SBJ PREP-WITH
v
S VvV O
we produce an RDF-triple of the form:

(2) s,v,0

For instance, given the dependency tree
shown in Figure 1, the extracted triples will
be (the preposition is adjoined to the verb):

(pipe,identify-with, caution_label)
(pipe,heat,dummy)
(pipe,insulate,dummy)

Note that the extracted triples only cap-
ture the predicate/argument dependencies
expressed by the natural language rule. In
particular, both the disjunction relation be-
tween the second and third triples and the
condition relation between the first and the
latter two triples are not captured. In other
words, the semantic representations obtained
are more similar to those produced by seman-
tic role labellers (Carreras y Marquez, 2005;
Palmer, Gildea, y Xue, 2010) than to deep
parsing semantics. To produce a more com-
plete semantic analysis of the input text, ad-
ditional mapping rules would need to be de-
fined. Alternatively these could be learned
from an annotated corpus. We leave the
question of a more complete RDF interpre-
tation of natural language open for further
research and focus instead on showing how
RDF representations can be used to provide a
computer interpretable meaning representa-
tions of natural language which can support
querying and reasoning about the meaning of
a text.

3.4 Constructing RDF Graphs

To support SPARQL queries and RDFS rea-
soning, the triples extracted from the depen-
dency trees are further converted into XML
formatted, RDF statements as illustrated in
Figure 2.

An RDF statement consists of a subject,
a property and an object. The subject of
an RDF statement is either a uniform re-
source identifier (URI) or a blank node, both
of which denote resources. They are not di-
rectly identifiable from the RDF statement.
The predicate is a URI which also indicates
a resource, representing a relationship. The
object is a URI, blank node or a string literal.

Given a triple (s,p,0) extracted from the
dependency tree, we build an RDF statement

by mapping s to a subject URI, p to a prop-
erty and o to either a URI or a literal depend-
ing on whether o is the subject of another
statement: if it does, o is mapped to a URI,
otherwise, it is mapped to a literal.

Recall though (cf. Figure 1), that the
normalised rules we start from contain ad-
ditional information e.g., information about
the ATA functional area or the zone intro-
ducing a rule. This additional information is
also converted to RDF triples as illustrated
in Figure 5. E.g., an ATA area is related
to a zone by an hasZone relation, a zone to
a rule by an hasRule relation and a rule to a
serie of elements by an element relation. In
this way, the information contained in the
additional database fields can be taken into
account when querying the OWL knowledge
base. The complete KB schema is shown in
Figure 5. Figure 4 shows the RDF interpre-
tation of Rule 14.

(ATA-38,has_rule, rule-14)
(rule-14,has_zone, zone-14)
(rule-14,element, pipe)
(pipe,identify-with, caution_label)
(pipe,heat,dummy)
(pipe,insulate,dummy)

Figure 4: Full interpretation of Rule 14

has_zone

ATA-38

Aule has_fone
element
Rule-1
fulhtext
element of Full text
segregated-from QO resource
electrical-route [literal

Figure 5: Graph of knowledge base

3.5 Adding Domain Knowledge

While the translation of the normalised rules
into RDF triples provides a computer inter-
pretable representations of these rules con-
tent, complementing these representations
with domain knowledge permits extending

the set of queries that can be answered by
supporting e.g., taxonomical reasoning. As
mentioned in Section 1, the addition of such
domain knowledge permits, for intance, re-
trieving a rule about hose pipes while querying
for rules about pipes.

RDF data can be annotated with semantic
metadata (e.g., classes and subclasses infor-
mation) using two principal syntaxes: RDFS
(Pérez, Arenas, y Gutierrez, 2006) and OWL
(McGuinness, Van Harmelen, y others, 2004)
with RDFS a sublanguage of OWL. We use
OWL to complement the RDF data extracted
from the textual rules with a taxonomic clas-
sification provided by the experts (in a differ-
ent setting, the required classification could
be retrieved e.g., from the web or automati-
cally constructed from relevant textual or for-
mal data). For instance, we define hose pipe,
electrical pipe and water pipe to be subclasses of
the pipe class.

4 Querying the Knowledge Base

RDFS and OWL databases can be queried
using the SPARQL query language (Pérez,
Arenas, y Gutierrez, 2006). Like SQL,
SPARQL selects data from the query data
set by using a SELECT statement to deter-
mine which subset of the selected data is re-
turned. The WHERE clause is used to de-
fine graph patterns to find a match for in
the query data set. Figure 2 shows some
example queries and their results. As the
example shows, the RDF model of textual
content naturally supports complex and var-
ied queries on the combined content of the
rules, the additional information contained in
the database (ATA area, Zone, etc) and the
domain ontology. For instance, query 6 de-
scribes how to select an element and its prop-
erties values, where the element is related
to zone-1 and rule-1 and the properties are:
segregate-from, segregate-at OI segregate-in.

5 Experiment

The approach described in the preceding sec-
tion was implemented and evaluated on a
small sample of 115 normalised rules. Fig-
ure 6 shows a screenshot of the system graph-
ical interface. Using this interface, the user
can run the different subprocesses involved
namely, extraction of text from a database,
sentence tokenization, term extraction and
recognition, dependency parsing, construc-
tion of the RDF database and SPARQL

Query

Gloss

Example Answer

SELECT ?element WHERE {?element :has-

zone :zone-26 .}

SELECT

:element-of :rule-1. }

?element WHERE {?element

SELECT ?element ?rule WHERE {?element

Elements related to zone 26

Elements related to rule 1

Rules applying to zone 1 and

movement, hose

pipe

(pipe, (rule-6, rule-15, rule-

:has-zone :zone-1 ; :element-of ?rule.} their elements 5, rule-4, rule-18, rule-11
SELECT ?element ?zone WHERE {?element Zones of objects mentioned (hose, (zone-21, zone-77,
:element-of :rule-21 ; :has-zone ?zone} in rule 21 ..))
SELECT ?element ?has-zone WHERE Elements belong in zone 1 pipe
{?element :has-zone ?has-zone FILTER
(?has-zone = :zone-1) }
SELECT ?element ?segregate-at 7segregate- properties of element belong (pipe,(segregate-
in ?segregate-from WHERE {?element in zone-1 and related to rule- at(clearance), segregate-
segregate-at 7segregate-at; :segregate-in 1 in(cool), segregate-
?segregate-in ; :segregate-from 7segregate- from(route, skin)))
from; :element-of :rule-1 ; :has-zone :zone-1 .
}
Table 2: Example SPARQL Queries. Namespaces are omitted for brevity
® Model Writer
This work is done in the frame of Model-Writer project with Synalp team of Loria, Nancy
Text extraction ~ Terms extraction Parsing knowledge base = SPARQL Query
Quit shows namespace of resources Rin Qpery
Select -> Where =
segregate_for segregate_at |?e1ement mdwr:segregate_in ?segregate-in Add & edit

segregate_from

segregate_from_|
segregate_from_|
segregate_from_|
segregate_from_|
segregate_in

segregate_from
segregate_in

SELECT ?element ?segregate_at ?segregate_from ?segregate_in
WHERE { ?element mdwr:zone mdwr:zone_1 .
?element mdwr:segregate_at ?segregate_at .
?element mdwr:segregate_from ?segregate_from .
?element mdwr:segregate_in ?segregate_in .

segregate_of 3}

lseareqate to

element	segregate_at	segregate_from	segregate_in
<http://localhost:8080/Rdf_example#pipe>	"clearance"	"route"	"cool"
<http://localhost:8080/Rdf_example#pipe>	"clearance"	"skin"	"cool"

Figure 6: Screenshot of the application

querying.

The overall architecture is fully generic
and could be used for any text independent of
its domain. The application is implemented
with Python 3.4, where the used packages
are:

e Term extraction: Nltk (v.3.0.1) and XIrd
(v.0.2.1)

e Parsing: Stanford-parser (v.3.3.9)
e Reasoning: Jena (v.2.13.0)

For our proof-of-concept experimentation,
we used a dataset of 115 rules. In average,
each rule is mapped by the semantic pars-
ing process to 5.91 triples (min:1, max:7).
To support reasoning we complemented the
RDF graph extracted from the rules with a
domain ontology which we created manually.
The ontology is composed of 24 classes, of
which 17 are subclasses. We tested the result-
ing RDFS knowledge base using 20 SPARQL
queries of which 6 are shown, together with
their result, in Figure 2.

6 Conclusion

While RDFizers are commonly used to con-
vert various data format to RDF (Hwang et
al., 2014), little work has been done on how
to map natural language to RDF and on how
to exploit such a mapping. In this paper,
we have presented an end-to-end proof-of-
concept process illustrating how natural lan-
guage can be mapped to RDF triples and how
the existing link between RDF, RDFS and
OWL could be exploited to support reason-
ing about text content using knowledge not
contained in text (e.g., ATA information pro-
vided by an external database and a taxon-
omy of the domain being considered). The re-
sulting approach permits querying text con-
tent while taking into account this external
knowledge i.e., permits merging knowledge
from different sources.

One distinctive feature of our approach
is that we use dependency trees as a ba-
sis for constructing RDF triples. This is
a natural move as dependency tree encodes
functor/argument and modifier/modifiee re-
lations. Thus constructing a RDF triple
(s,p,0) from a dependency subtree p(s,o)
amounts to encoding the dependency tree
syntactic/semantic functor p as an RDF
property and its children s,o as RDF re-
sources related by the p property. That

is, a syntactic functor/modifiee is mapped
to a property and its arguments/modifiers
to resources related by that property. Ex-
ploiting this natural mapping between de-
pendency trees and RDF triples allows for
a simple and linguistically principled seman-
tic parsing process. Modification and addi-
tion to the base semantic construction pro-
cedure (i.e. to the mapping between depen-
dency trees and RDF triples) can be defined
at will, based on linguistic information and
on the requirements of the application do-
main. For instance, although we did not pro-
cess determiners, these might be relevant in
another context. Their semantics could be
captured by specifying an additional map-
ping rule mapping e.g., a det-noun subtree to
an RDF triple of the form (n, det, d) where
n,d are the noun and the determiner and det
is the property relating them. The interpre-
tation of such a triple would then be deter-
mined by the reasoner used to interpret the
RDF graph. Similarly, unary modifiers could
be encoded as datatype properties.

As mentioned in Section 3.3, the RDF
meaning representations currently extracted
by our approach are limited to func-
tor/argument dependencies. To derive a
more complete representation of the mean-
ing of natural language sentences, the set of
mapping rules used to convert dependency
subtrees to RDF triples need to be extended.
This could be done either manually (using
e.g., graph rewriting techniques (Bédaride y
Gardent, 2011)) or automatically. It would
in particular be interesting to explore how
a parallel or comparable corpus of text and
RDF triples could be built from which map-
ping rules could be learned.

Further directions for future work include
conducting a large scale evaluation of the
meaning representations obtained (Do they
support the queries required by the end ap-
plication namely the retrieval by engineers of
the information that is relevant to a given
task 7) and designing a robustness mecha-
nism to counter parse errors. Indeed if the
parse tree is incorrect so are the RDF triples.
Although the Stanford Parser has a high ac-
curacy on newspaper text (92%), accuracy
decreased on out of domain data. Another in-
teresting direction for further research would
be to explore ways of automatically detecting
and correcting parsing errors in order to im-
prove the semantic representations obtained.

Bibliografia

Bédaride, P. y C. Gardent. 2011. Deep se-
mantics for dependency structures. En
Computational Linguistics and Intelligent

Text Processing. Springer, paginas 277—
288.

Berant, J., A. Chou, R. Frostig, y P. Liang.
2013. Semantic parsing on freebase

from question-answer pairs. En FMNLP,
paginas 1533-1544.

Bordes, A., J. Weston, R. Collobert, y
Y. Bengio. 2011. Learning structured
embeddings of knowledge bases. En Con-

ference on Artificial Intelligence, numero
EPFL-CONF-192344.

Cai, Q. vy A. Yates. 2013. Large-scale
semantic parsing via schema matching
and lexicon extension. En Proceed-
ings of the 41st Annual Meeting on As-
sociation for Computational Linguistics
(ACL), paginas 423-433. Citeseer.

Candito, M.-H. y S. Kahane. 1998. Can the
tag derivation tree represent a semantic
graph? an answer in the light of meaning-
text theory. En Proceedings of the Fourth
Workshop on Tree-Adjoining Grammars
and Related Frameworks.

Carreras, X. y L. Marquez. 2005. Intro-
duction to the conll-2005 shared task: Se-
mantic role labeling. En Proceedings of
the Ninth Conference on Computational
Natural Language Learning, paginas 152—
164. Association for Computational Lin-
guistics.

Hwang, J., H. Jung, S. Yoo, y S. Park.
2014. Design of an rdfizer for online social
network services. En Future Information
Technology. Springer, paginas 449-454.

Kate, R. y R. Mooney. 2006. Using string-
kernels for learning semantic parsers. En
Proceedings of the 21st International Con-
ference on Computational Linguistics and
the 44th annual meeting of the Association
for Computational Linguistics, péginas
913-920. Association for Computational
Linguistics.

Klein, D. y C. Manning. 2003. Accurate
unlexicalized parsing. En Proceedings of
the J1st Annual Meeting on Association
for Computational Linguistics-Volume 1,
péaginas 423-430. Association for Compu-
tational Linguistics.

McGuinness, D., F. Van Harmelen, y oth-
ers. 2004. Owl web ontology lan-
guage overview. WS3C recommendation,
10(10):2004.

Nakagawa, H. y T. Mori. 2002. A sim-
ple but powerful automatic term extrac-
tion method. En COLING-02 on COM-
PUTERM 2002: second international
workshop on computational terminology-
Volume 14, paginas 1-7. Association for
Computational Linguistics.

Palmer, M., D. Gildea, y N. Xue. 2010. Se-
mantic role labeling. Synthesis Lectures
on Human Language Technologies, 3(1):1-
103.

Pérez, J., M. Arenas, y C. Gutierrez. 2006.
Semantics and complexity of sparql. En
The Semantic Web-ISWC 2006. Springer,
péaginas 30-43.

Warren, D. y F. Pereira. 1982. An efficient
easily adaptable system for interpreting
natural language queries. Computational
Linguistics, 8(3-4):110-122.

Woods, W. 1973. Progress in natural lan-
guage understanding: an application to
lunar geology. En Proceedings of the June
4-8, 1973, national computer conference
and exposition, paginas 441-450. ACM.

Zettlemoyer, L. y M. Collins. 2012. Learn-
ing to map sentences to logical form:
Structured classification with probabilis-

tic categorial grammars. arXiv preprint
arXww:1207.1420.

